
CSCI 1951-W Sublinear Algorithms for Big Data Fall 2020

Lecture 9: PCP Theorem

Lecturer: Jasper Lee Scribe: Ryan Greenblatt

1 Review of Complexity Theory

We will consider the set of strings of 0 or 1 of arbitrary length:

L = {0, 1}∗

This can be thought of as the class of objects in the context of property testing.

A language is a set of strings L ⊆ L . This can also be thought of as a property in the
context of property testing.

A decision problem is where we are given x ∈ L and we must decide if x ∈ L (or x /∈ L)
Definition 9.1 (Class P) A language L ∈ P if and only if there exists a deterministic
algorithm that decides L, which always halts in time poly(|x|) for all x ∈ L . |x| is the size
of the input x.

Examples:

• Testing Bipartiteness of a graph.

• Existence of Eulerian cycle in a graph.

• Determining if 2 vertices are connected in a graph.

Definition 9.2 (Class NP) A language L ∈ NP if and only if there exists a deterministic
algorithm V (x,w) and polynomials p(n) and q(n) such that

1. V (x,w) runs in p(|x|+ |w|) time.

2. (Completeness) ∀x ∈ L, ∃ w of length q(|x|) such that V (x,w) = 1.

3. (Soundness) ∀x /∈ L, ∀w of length q(|x|), V (x,w) = 0.

We call V the verifier and w the witness. w can be thought of as the item which shows that
x ∈ L. So if no such item exists, then x /∈ L.
Examples:

• 3-SAT

• 3 Colorability (Graph coloring).

Definition 9.3 (Polytime reduction) LA ≤p LB if and only if there exists a polytime
computable function f : L → L such that a ∈ LA if and only if f(a) ∈ LB.

We can say that LA reduces to LB or that LB is “harder” than LA.

The intuition is that we can use a solver for LB to decide membership in LA.

Definition 9.4 (Class NP-hard) L ∈ NP-hard if and only if for all L′ ∈ NP, L′ ≤p L.

Intuition: L is harder than any problem in NP.

Definition 9.5 (Class NP-complete) NP-complete = NP ∩ NP-hard.

Intuition: L is among the hardest problems in NP.

1



P vs NP Observations

P ⊆ NP because we can just ignore the witness and solve using the verifier.

The question of whether or not P = NP is equivalent to asking if finding a witness is as
easy as verifying a witness.

NP Languages as “Theorems with Proofs”

Given L ∈ NP:

• Interpret any x ∈ L as a (perhaps false) theorem statement that x ∈ L
• ∀x ∈ L, there exists a proof w such that V (x,w) = 1.

• ∀x ∈ L, no such proof w exists.

For example, in the context of 3-colorability:

Theorem statement: “The input graph G is 3 colorable”

Proof: “A proper 3-coloring of G”

2 Probabilistically checkable proofs (PCPs)

Definition 9.6 PCPc,s[r, q] where

• c: completeness probability

• s: soundness probability

• r: number of random bits required by V

• q: query complexity of V with respect to π

The complexity class PCPc,s[r, q] consists of L such that there exists a randomized polytime
verifier V (x,π) such that

1. If x ∈ L, there exists a poly-sized π such that P(V (x,π) = 1) ≥ c.

2. If x /∈ L, for all (incorrect proofs) π, P(V (x,π) = 1) ≤ s.

3. V uses at most r(|x|) bits of randomness.

4. V makes at most q(|x|) non-adaptive queries into π.

Definition 9.7 PCP shorthand

• PCP[r, q] = PCP1, 1
2
[r, q]

• PCP = PCP[O(log n), O(1)]

Proposition 9.8 PCP ⊆ NP

Proof. (Sketch)

O(log n) random bits cause only poly(n) possibilities of the random string which can be
enumerated by the NP verifier. This is because we can consider random bits as inputs to a
deterministic verifier.

2



Theorem 9.9 (PCP theorem) NP ⊆ PCP. Every L ∈ NP has PCP system.

Interpreting the PCP Theorem: For every x ∈ L there must be a NP proof w because
L ∈ NP. This w can be always be encoded as a PCP proof π where π has length poly(|w|).
Further, |w| is poly(|x|), so |π| is also poly(|x|).

The “simple” proof is 40 pages long – so we won’t prove it.

Related efficiency questions:

1. O(1) query. For example, is it 10100?

2. Length of π might also be very long as a function of |x|.

Theorem 9.10 (H̊astad’s 3-bit PCP) For any ε, δ > 0, NP = PCP1−ε, 1
2
+δ[O(log n), 3].

Further, the 3 queries are non-adaptive.

There have been many PCP constructions, and is an ongoing line of work.

PCP Theorem ⇐⇒ Gap/Inapproximability

We will use CSP (Constraint Satisfaction Problem) to illustrate this connection. This is
basically a generalization of SAT.

Definition 9.11 (Constraint) For:

• A set of variables V = {v1, . . . , vn}.
• Set of values

!
(finite), called the alphabet.

A q-ary constraint is a tuple (C ⊆ Σq, i1, . . . , iq) where C denotes the set of acceptable
values of variables vi1 , . . . , viq .

An assignment a : V → Σ satisfies the constraint if (a(vi1), . . . , a(viq)) ∈ C

Definition 9.12 (q-CSP) An instance is x = (V,Σ, C) where C is a set of constraints such
that all constraints in C are q-ary.

The question is to decide if there exists an assignment a that satisfies all constraints C ∈ C.

Proposition 9.13 For q ≥ 2, q-CSP ∈ NP-complete

For example, 3-colorability can be modeled as a 2-CSP.

Example 9.14 Given G = (V, E) for vertices V and edges E, construct the following 2-CSP
instance:

V = V
Σ = {0, 1, 2} (colors)

C is such that the E don’t violate the rules of a valid coloring, using 1 constraint per
edge.

To illustrate the “gap” analogy, we need to a further notion of UNSAT value.

3



Definition 9.15 (UNSAT value)

UNSAT(C) = min
asgn. a

fraction of C ∈ C violated by a

In other words, the minimum violating fraction over all assignments a.

Clearly we have that C is satisfiable if and only if UNSAT(C) = 0.

Proposition 9.16 (UNSAT value) For q ≥ 2 and q-CSP x = (V,Σ, C), NP-hard to decide
if UNSAT(C) = 0 as opposed to UNSAT(C) ≥ 1

|C| .

Theorem 9.17 (PCP theorem, again) For some q ≥ 2 and |Σ| > 1, it is NP hard to decide
if UNSAT(C) = 0 as opposed to UNSAT(C) ≥ 1

2 .

Observation 9.18 Consider q-CSP as an optimization problem where we try to find an
assignment a that minimizes UNSAT (equivalently, maximizing the number of satisfied
constraints). Theorem 9.17 implies that it is NP-hard to approximate the maximum number
of satisfied constraints to a factor of 2.

Lemma 9.19 Theorem 9.9 is equivalent to Theorem 9.17.

Proof. We start by showing that Theorem 9.9 implies Theorem 9.17.

We will assume L ∈ NP also has PCP. We now must show that L ≤p q-CSP. WLOG, we
may consider the PCP verifier as a deterministic function which takes in the random string
as opposed to a random function. Consider this deterministic PCP verifier: V (x,π, rand)
with constant query complexity q. We will now construct a new q-CSP instance:

• V = [1, . . . , |π|]
• For each of the poly(|x|) many possible random strings, we can construct a q-ary

constraint. This is because we can constrain the queried variables to be such that V
accepts for all possible random strings.

UNSAT(l) has gap ≥ 1
2 , since PCP has perfect completeness and has soundness proba-

bility 1
2 .

Now we show the other directions, that Theorem 9.17 implies Theorem 9.9.

We have that the GAP-q-CSP ∈ NP-hard. We now must show that we have PCP for
every L ∈ NP. Fix any arbitrary L ∈ NP for any instance x and consider the corresponding
q-CSP instance (V,Σ, C). This q-CSP instance exists because the GAP-q-CSP ∈ NP-hard
by Theorem 9.17.

We can construct a PCP verifier of L:

• The PCP proof π will be an assignment to the q-CSP instance described above.

• We may then randomly pick a constraint in C and check the q variables.

• Because this is a GAP-q-CSP instance, we have that the rejection probability ≥
UNSAT(C).

4


