CSCI 1951-W Sublinear Algorithms for Big Data Fall 2020

Lecture 9: PCP Theorem
Lecturer: Jasper Lee Scribe: Ryan Greenblatt

1 Review of Complexity Theory

We will consider the set of strings of 0 or 1 of arbitrary length:
< ={0,1}"
This can be thought of as the class of objects in the context of property testing.

A language is a set of strings £ C .. This can also be thought of as a property in the
context of property testing.

A decision problem is where we are given x € .Z and we must decide if z € £ (or = ¢ L)
Definition 9.1 (Class P) A language £ € P if and only if there exists a deterministic
algorithm that decides £, which always halts in time poly(|x|) for all x € Z. |z| is the size
of the input z.
Examples:

e Testing Bipartiteness of a graph.

e Existence of Eulerian cycle in a graph.

e Determining if 2 vertices are connected in a graph.

Definition 9.2 (Class NP) A language £ € NP if and only if there exists a deterministic
algorithm V' (z,w) and polynomials p(n) and ¢(n) such that
1. V(z,w) runs in p(|z| + |w|) time.

2. (Completeness) Vo € L, 3 w of length ¢(|x|) such that V(z,w) = 1.
3. (Soundness) Vx ¢ L, Vw of length ¢(|z|), V(z,w) = 0.
We call V the verifier and w the witness. w can be thought of as the item which shows that
x € L. So if no such item exists, then = ¢ L.
Examples:
e 3-SAT
e 3 Colorability (Graph coloring).
Definition 9.3 (Polytime reduction) £4 <, Lp if and only if there exists a polytime
computable function f :.% — £ such that a € L4 if and only if f(a) € Lp.
We can say that £4 reduces to Lp or that Lp is “harder” than Ly4.
The intuition is that we can use a solver for Lp to decide membership in L4.
Definition 9.4 (Class NP-hard) £ € NP-hard if and only if for all £ € NP, L' <, L.

Intuition: £ is harder than any problem in NP.
Definition 9.5 (Class NP-complete) NP-complete = NP N NP-hard.

Intuition: £ is among the hardest problems in NP.

P vs NP Observations

P C NP because we can just ignore the witness and solve using the verifier.

The question of whether or not P = NP is equivalent to asking if finding a witness is as
easy as verifying a witness.

NP Languages as “Theorems with Proofs”

Given L € NP:
e Interpret any = € £ as a (perhaps false) theorem statement that x € £
e Vz € L, there exists a proof w such that V(z,w) = 1.

e Vx € L, no such proof w exists.

For example, in the context of 3-colorability:
Theorem statement: “The input graph G is 3 colorable”
Proof: “A proper 3-coloring of G”

2 Probabilistically checkable proofs (PCPs)

Definition 9.6 PCP_,[r, q] where

c: completeness probability

s: soundness probability
e 7: number of random bits required by V'

e ¢: query complexity of V with respect to «

The complexity class PCP, s[r, g] consists of £ such that there exists a randomized polytime
verifier V(z,) such that

1. If x € L, there exists a poly-sized 7 such that P(V(z,7) =1) > c.
2. If z ¢ L, for all (incorrect proofs) m, P(V(z,7) =1) < s.
3. V uses at most r(|z|) bits of randomness.

4. V makes at most ¢(|z|) non-adaptive queries into 7.
Definition 9.7 PCP shorthand

e PCP[r,q] = PCPL%[T‘, q]

e PCP = PCP[O(logn),O(1)]

Proposition 9.8 PCP C NP

Proof. (Sketch)

O(logn) random bits cause only poly(n) possibilities of the random string which can be
enumerated by the NP verifier. This is because we can consider random bits as inputs to a
deterministic verifier. O

Theorem 9.9 (PCP theorem) NP C PCP. Every L € NP has PCP system.

Interpreting the PCP Theorem: For every x € L there must be a NP proof w because
L € NP. This w can be always be encoded as a PCP proof = where 7 has length poly(Jw|).
Further, |w| is poly(|x|), so || is also poly(|z|).

The “simple” proof is 40 pages long — so we won’t prove it.

Related efficiency questions:
1. O(1) query. For example, is it 101907
2. Length of m might also be very long as a function of |z|.

Theorem 9.10 (Hastad’s 3-bit PCP) For any €, > 0, NP = PCPlie,%M[O(logn),S].
Further, the 8 queries are non-adaptive.

There have been many PCP constructions, and is an ongoing line of work.

PCP Theorem <= Gap/Inapproximability

We will use CSP (Constraint Satisfaction Problem) to illustrate this connection. This is
basically a generalization of SAT.
Definition 9.11 (Constraint) For:

o A set of variables V = {vy,...,v,}.

e Set of values) (finite), called the alphabet.

A g-ary constraint is a tuple (C' C X9,4y,...,1;) where C' denotes the set of acceptable
values of variables v;,, ..., v;,.

An assignment a : V — X satisfies the constraint if (a(v;,), ..., a(vig)) € C

Definition 9.12 (¢-CSP) An instance is x = (V, X, C) where C is a set of constraints such
that all constraints in C are g-ary.

The question is to decide if there exists an assignment a that satisfies all constraints C' € C.

Proposition 9.13 For ¢ > 2, g-CSP € NP-complete

For example, 3-colorability can be modeled as a 2-CSP.

Example 9.14 Given G = (V, E) for vertices V and edges E, construct the following 2-CSP
instance:

V=V
¥ =40,1,2} (colors)

C is such that the F don’t violate the rules of a valid coloring, using 1 constraint per
edge.

To illustrate the “gap” analogy, we need to a further notion of UNSAT value.

Definition 9.15 (UNSAT value)

UNSAT(C) = min fraction of C' € C violated by a

asgn. a

In other words, the minimum violating fraction over all assignments a.

Clearly we have that C is satisfiable if and only if UNSAT(C) = 0.

Proposition 9.16 (UNSAT value) For ¢ > 2 and q-CSP x = (V,%,C), NP-hard to decide

if UNSAT(C) = 0 as opposed to UNSAT(C) > -

Theorem 9.17 (PCP theorem, again) For some g > 2 and |X| > 1, it is NP hard to decide
if UNSAT(C) = 0 as opposed to UNSAT(C) > 3.

Observation 9.18 Consider ¢-CSP as an optimization problem where we try to find an
assignment a that minimizes UNSAT (equivalently, maximizing the number of satisfied
constraints). Theorem 9.17 implies that it is NP-hard to approximate the maximum number
of satisfied constraints to a factor of 2.

Lemma 9.19 Theorem 9.9 is equivalent to Theorem 9.17.

Proof. We start by showing that Theorem 9.9 implies Theorem 9.17.

We will assume £ € NP also has PCP. We now must show that £ <, ¢-CSP. WLOG, we
may consider the PCP verifier as a deterministic function which takes in the random string
as opposed to a random function. Consider this deterministic PCP verifier: V (z,w, rand)
with constant query complexity q. We will now construct a new ¢-CSP instance:

o V=11,...,|n

e For each of the poly(]z|) many possible random strings, we can construct a g-ary
constraint. This is because we can constrain the queried variables to be such that V
accepts for all possible random strings.

UNSAT(l) has gap > %, since PCP has perfect completeness and has soundness proba-
bility 3.
Now we show the other directions, that Theorem 9.17 implies Theorem 9.9.

We have that the GAP-¢-CSP € NP-hard. We now must show that we have PCP for
every L € NP. Fix any arbitrary £ € NP for any instance z and consider the corresponding
¢-CSP instance (V,%,C). This ¢-CSP instance exists because the GAP-¢-CSP € NP-hard
by Theorem 9.17.

We can construct a PCP verifier of L:

e The PCP proof 7 will be an assignment to the ¢-CSP instance described above.
e We may then randomly pick a constraint in C and check the ¢ variables.

e Because this is a GAP-¢-CSP instance, we have that the rejection probability >
UNSAT(C).

